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Abstract

Metabarcoding of environmental DNA is increasingly used for biodiversity assessments in

aquatic communities. The efficiency and outcome of these efforts are dependent upon either

de novo primer design or selecting an appropriate primer set from the dozens that have

already been published. Unfortunately, there is a lack of studies that have directly compared

the efficacy of different metabarcoding primers in marine and estuarine systems. Here we

evaluate five commonly used primer sets designed to amplify rRNA barcoding genes in

fishes and compare their performance using water samples collected from estuarine sites in

the highly biodiverse Indian River Lagoon in Florida. Three of the five primer sets amplify a

portion of the mitochondrial 12S gene (MiFish_12S, 171bp; Riaz_12S, 106 bp; Valenti-

ni_12S, 63 bp), one amplifies 219 bp of the mitochondrial 16S gene (Berry_16S), and the

other amplifies 271 bp of the nuclear 18S gene (MacDonald_18S). The vast majority of the

metabarcoding reads (> 99%) generated using the 18S primer set assigned to non-target

(non-fish) taxa and therefore this primer set was omitted from most analyses. Using a con-

servative 99% similarity threshold for species level assignments, we detected a comparable

number of species (55 and 49, respectively) and similarly high Shannon’s diversity values

for the Riaz_12S and Berry_16S primer sets. Meanwhile, just 34 and 32 species were

detected using the MiFish_12S and Valentini_12S primer sets, respectively. We were able

to amplify both bony and cartilaginous fishes using the four primer sets with the vast majority

of reads (>99%) assigned to the former. We detected the greatest number of elasmo-

branchs (six species) with the Riaz_12S primer set suggesting that it may be a suitable can-

didate set for the detection of sharks and rays. Of the total 76 fish species that were

identified across all datasets, the combined three 12S primer sets detected 85.5% (65 spe-

cies) while the combination of the Riaz_12S and Berry_16S primers detected 93.4% (71

species). These results highlight the importance of employing multiple primer sets as well as

using primers that target different genomic regions. Moreover, our results suggest that the

widely adopted MiFish_12S primers may not be the best choice, rather we found that the

Riaz_12S primer set was the most effective for eDNA-based fish surveys in our system.
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1 Introduction

The monitoring of marine and aquatic communities requires accurate biodiversity assess-

ments which are typically based on surveys conducted using nets, traps, cameras, or direct

observation. Environmental DNA (eDNA) approaches are emerging as a tool for the charac-

terization of marine biodiversity that can complement traditional surveys [1–4]. The initial

eDNA studies in aquatic systems were published a decade ago and focused on species-specific

primers and qPCR to detect invasive or endangered freshwater species [5–7]. Not long thereaf-

ter, researchers began exploring the use of eDNA in marine environments [8] including the

use of metabarcoding approaches to identify and characterize whole communities [9–11]. This

latter approach involves PCR amplification and library preparation using primers that are

designed to amplify a barcoding gene (i.e., COI, 16S, 18S) across a specific taxonomic group;

the breadth of which can vary from metazoans to a single genus. Subsequent sequencing of the

metabarcoding libraries on high-throughput sequencing platforms such as an Illumina MiSeq

generates millions of sequence reads that must then be sorted bioinformatically and assigned a

specific taxonomy.

Prior to beginning a metabarcoding initiative, primers that target the group of interest

must be selected from the literature or designed de novo. While there are a number of pub-

lished primer sets already available [12], each suffers from unique biases making primer testing

essential. For instance, primer-template mismatch or unequal amplification efficiency (PCR

bias) can result in uneven amplification and false negatives [13–15]. This is particularly true

for primers designed to work across broad taxonomic groups where primer mismatches are

likely to occur. PCR bias can also result from the competition of unbound primers for DNA

templates, in which case the most abundant templates are more likely to be amplified, resulting

in false negatives for low copy number templates [16,17]. Furthermore, if PCR conditions

allow for non-specific binding (low annealing temperature) or if poorly designed primers per-

mit for ubiquitous template binding, preferential amplification of the most common templates

can lead to sequencing runs dominated by non-target taxa such as bacteria, fungi, or algae at

the expense of less common target DNA.

Cytochrome c oxidase subunit I (COI) has historically been the most common gene for

DNA barcoding in animals [18–21]. As a result, there is extensive reference data available for

COI in the public databases (National Center for Biotechnology Information, NCBI; the Bar-

code of Life Data System, BOLD). However, the conserved nature of COI, which makes it use-

ful as a barcoding gene, also complicates the design of taxon-specific primers for

metabarcoding [22–24]. Consequently, COI metabarcoding primers are designed with a high

degree of base degeneracy [25,26] which results in the amplification of a wide breadth of taxa

[27], but also often results in a large percentage of non-target sequence reads [28,29]. As a

result, COI is not commonly used for eDNA metabarcoding [but see 18,30]. Instead, the mito-

chondrial 12S and 16S rRNA genes are generally favored [16,31–36]. Both genes include con-

served regions for primer design as well as variable regions that allow for genus or species-level

resolution. Moreover, reference sequences for these two genes, particularly for fishes, are well

represented in the public databases [23,37].

Before beginning an experiment, the performance of newly designed primers can be evalu-

ated in silico [16], however, there is no guarantee that they will perform as predicted when

applied to field-based samples. The efficiency of metabarcoding primers varies with commu-

nity composition and complexity [16,22,38], and as a result, it is recommended that candidate

primer sets be tested on field samples [29]. Over the past several years, a number of studies

have been published that evaluate and compare different primer sets for use in eDNA metabar-

coding of fishes [16,29,39–43]. In a recent study, Zhang et al. [42] evaluated the efficacy of 22
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published metabarcoding primer sets covering several gene regions and using both in silico
and in vitro analysis on freshwater fishes in China. They found that, in general, 12S rRNA

primers detected a greater number of species than either 16S rRNA or COI primers. Moreover,

they found inconsistent results when comparing in silico and in vitro experiments [42]. Here

we focus on five primer sets (12S and 16S), three of which performed well in the freshwater

study of Zhang et al. [42], and include an additional 18S primer set not previously evaluated

(but designed for fishes). We assess their suitability for detecting fishes in a species rich estua-

rine system in Florida (the Indian River Lagoon) and compare them in terms of 1) specificity

(amplification of fishes at the exclusion of other taxa), 2) universality (amplification of a diver-

sity of fish taxa), and 3) taxonomic resolution (ability to resolve taxa to the species level).

2 Materials and methods

2.1 Primer selection and sample collection

Here we selected five primer sets to evaluate. These included three 12S rRNA and one 16S

rRNA primer set (Table 1) that had been employed in a number of aquatic eDNA studies tar-

geting fishes. In addition, we selected one nuclear 18S rRNA primer set [44] that was designed

for freshwater fishes but had not been evaluated for eDNA metabarcoding.

Two replicate 500 ml water samples were collected in June 2018 from each of six sites within

the northern Indian River Lagoon (IRL) in central Florida (S1 Table). Sites were in close prox-

imity and over a similar shallow water habitat known to support oyster reefs. Water samples

were taken at the surface. Prior to water sampling, all collection bottles, forceps, scissors, and

filter holders were sterilized with 20% sodium hypochlorite solution for at least 20 min, rinsed

with reverse osmosis (RO) water and air dried. Water samples were collected in sterilized Nal-

gene bottles including two negative field controls consisting of sterile Nalgene bottles filled in

the field with store-bought bottled water. As is true for much of the IRL, our water samples

were highly turbid with high concentrations of suspended organic and/or inorganic material

[45]. Following the recommendations of Kumar et al. [46], samples were stored on ice and

transported back to the lab and filtered using 0.45 μm mixed cellulose ester (MCE) filters. Neg-

ative laboratory controls consisted of 500 ml of RO water filtered using the same protocol as

our field samples. After filtration, filter membranes were stored in 3 ml tubes in Longmire’s

buffer at -20˚C until DNA extraction.

2.2 Library preparation and sequencing

All DNA extractions were carried out in a dedicated PCR free workspace at the University of

Central Florida Marine Molecular Ecology and Evolution Laboratory. To prevent

Table 1. Primer sets used in this study including primer sequence, annealing temperature used for PCR1, and expected average amplicon length.

Primer set Locus Original primer

name

Primer sequence (5’-3’) Annealing temperature

(˚C)

Amplicon length

(bp)

Reference

MiFish_12S 12S MiFish-U-F

MiFish-U-R

GTCGGTAAAACTCGTGCCAGC
CATAGTGGGGTATCTAATCCCAGTTTG

61.5 171 Miya et al. 2015

Riaz_12S 12S 12S-V5f

12S-V5r

ACTGGGATTAGATACCCC
TAGAACAGGCTCCTCTAG

55 106 Riaz et al. 2011

Valentini_12S 12S L1848

H1913

ACACCGCCCGTCACTCT
CTTCCGGTACACTTACCATG

55 63 Valentini et al. 2016

Berry_16S 16S Fish16sF/D

16s2R

GACCCTATGGAGCTTTAGAC
CGCTGTTATCCCTADRGTAACT

54 219 Berry et al. 2017

MacDonald_18S 18S Fish_18S_1F

Fish_18S_3R

GAATCAGGGTTCGATTCC
CAACTACGAGCTTTTTAACTGC

62 271 MacDonald et al.

2014

https://doi.org/10.1371/journal.pone.0266720.t001
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contamination, all equipment and bench spaces were cleaned before use with 10% sodium

hypochlorite solution followed by 70% ethanol and irradiated with UV light for 20 min. All

pipetting was conducted using sterile barrier filter tips. Prior to DNA extraction, filters were

cut in half and one-half was archived in Longmire’s buffer and stored at -20˚C. The other half

was placed in a 1.5 ml Eppendorf tube for DNA extraction and cut into small pieces using ster-

ilized scissors. DNA was extracted from each and eluted in 100 μL of buffer using the E.Z.N.A.

Tissue DNA Kit (Omega Bio-tek, Inc., GA, USA), following the manufacturers’ protocol and

which has been shown to perform well in previous experiments [45]. The resulting extraction

was purified using a Zymo OneStep PCR Inhibitor Removal Kit (Zymo Research, CA, USA),

and eluted in a final volume of 50 μl. DNA concentrations were determined using a Qubit 4.0

and the dsDNA High Sensitivity Assay Kit (Invitrogen, CA, USA).

Illumina libraries were constructed for each sample using a two-step PCR protocol follow-

ing Kumar et al. [45]. PCR 1 (qPCR) was performed using custom primers that included both

Illumina sequencing primers and locus specific primers (see Table 1 in [45]). Amplifications

were carried out on a CFX96 Touch Real Time PCR System (Bio-Rad, CA, USA) in a total vol-

ume of 25 μl with each reaction containing 12.5 μl of 2× SsoAdvance Universal SYBR Green

Supermix (Bio-Rad), 0.5 μl forward primer (10 μM), 0.5 μl reverse primer (10 μM), 2 μl of tem-

plate DNA, and 9.5 μl of ultrapure water (ThermoFisher Scientific, MA, USA). The thermocy-

cling profile included an initial denaturation step at 95˚C for 3 min, followed by 30 cycles of

denaturation at 95˚C for 30 s, annealing at the primer annealing temperature (Table 1) for 30

s, and extension at 72˚C for 30 s, followed by a final extension at 72˚C for 5 min. Each qPCR

run included a no-template control as well as an extraction control. To minimize false nega-

tives (PCR dropouts), qPCRs were performed in duplicates. Following qPCR, duplicates were

pooled before excess primers and dNTPs were removed using an E.Z.N.A. Cycle Pure Kit

(Omega Bio-tek, Inc.) following manufacturer’s protocol. The purified PCR products were

quantified using a Qubit 4.0 fluorometer and served as the template DNA for PCR 2.

PCR 2 was performed using primer pairs consisting of Illumina adaptors (P5 and P7), 8 bp

Nextera index sequences, and an overhang sequence complementary to the Illumina sequenc-

ing primer (see S1 Fig in [45]). Amplifications were carried out using a Veriti Thermal Cycler

(Applied Biosystems, CA, USA) and 25 μl reaction volumes containing 12.5 μl IBI Taq 2× Mas-

ter Mix (IBI Scientific, IA, USA), 0.5 μl forward primer (10 μM), 0.5 μl reverse primer

(10 μM), 2 μl DNA template, and 9.5 μl of ultrapure water. PCR cycling conditions were identi-

cal to PCR 1 except only 15 cycles were run and a universal annealing temperature of 55˚C was

employed. Final PCR products were cleaned using E.Z.N.A. Cycle Pure Kits, quantified on a

Qubit 4.0, and pooled in equimolar concentrations (one pool for each primer set). Each pooled

library was then size-selected based on expected fragment size using a PippenHT (Sage Sci-

ence, MA, USA) and a 2% agarose gel cassette and quantified using a NEB Next Library Quan-

tification Kit for Illumina (New England Biolabs, MA, USA). The library was adjusted to 4 nM

and denatured following Illumina protocols. The denatured library was combined with 10%

PhiX control and sequenced bidirectionally on an Illumina MiSeq at the University of Central

Florida Genomics and Bioinformatics Cluster (GBC) Core Laboratory. Sequencing was con-

ducted using a Nano 300 v2 (2 × 150) Reagent Kit for 2×111 cycles and a Nano 500 v2

(2 × 250) Reagent Kit for 2×251 cycles, depending on amplicon size.

2.3 Bioinformatic processing

The Illumina sequencing data was demultiplexed using the Illumina MiSeq software and

downloaded onto an in-house server maintained by the Genomics and Bioinformatics Cluster

(GBC) at the University of Central Florida. Individual FASTQ files were then filtered following
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a series of quality control steps using USEARCH v10 [47] and VSEARCH v2.14 [48]. First, the

forward and reverse reads were merged using the fastq_mergpairs command in USEARCH

with a minimum overlap of 100 bp for MiFish_12S, Berry_16S, MacDonald_18S; and 60 bp

for Valentini_12S and Riaz_12S, and a maximum number of mismatches set at 3 bp.

Sequences of unexpected length were discarded using the -fastq_minlen command of

USEARCH to retain only those reads with maximum deviation of 10% from the minimum

amplicon length. To locate and remove primers, the merged reads were sub-sampled to 5,000

sequences and then VSEARCH was used to remove primers. Next, we dereplicated sequences

and discarded sequences with expected errors > 0.5 using VSEARCH. Finally, unique

sequences were denoised using the UNOISE3 [49] option implemented in USEARCH.

UNOISE3 generates zero radius operational taxonomic units (ZOTUs) by correcting point

errors and filtering chimeric sequences [49]. To minimize the chance of spurious sequences

being included in the final dataset, the minimum abundance of five reads were set to generate

amplicon sequence variants (ASVs).

2.4 Taxonomic assignments

ASVs were compared against the NCBI GenBank nucleotide database using BLASTn with the

default parameters. To retrieve the full taxonomic identity, we queried each of the “taxids”

from the BLAST results against the NCBI database using the “taxonkit lineage” command in

the program TaxonKit [50]. To reduce the uncertainty in taxonomic assignments, we dis-

carded ASVs with a bitscore below 250 and/or query coverage below 100%. Each ASV was

then assigned to the lowest taxonomic level based on the percent similarity to NCBI align-

ments. We recognize that the rate of evolution varies across genes and gene regions and so set-

ting a single taxonomic threshold and applying it across all primer sets could impact

interpretations of the results. Therefore, we examined results for three similarity thresholds for

species level designations (99%, 98%, and 97%) and present these in supplemental materials

(S2 Table). These results did not change our interpretation of the data and therefore in main

manuscript we present the results for the following taxonomic thresholds for all primer sets:

99% for species; 97% for genus; 95% for family; 90% for order; 85% for class; and 80% for phy-

lum following West et al. [35]. The resulting list of species was checked against a list of known

species from the Indian River Lagoon. Species detected in our metabarcoding data but absent

from that list were queried against FishBase (www.fishbase.org) to determine if they were pres-

ent in the central-west Atlantic. If an ASV matched� 99% with two closely related species but

only one of them was known to occur in the Indian River Lagoon or eastern Atlantic, then that

ASV was assigned to that known taxon. However, if both species were known to occur in the

eastern Atlantic region, taxonomic assignments were collapsed to the genus level.

2.5 Statistical analyses

Unless otherwise specified, all statistical analyses were performed using R version 4.0.2 [51].

For data analyses, sequence reads from the two replicates taken at each of the six sampling

sites were pooled. We computed diversity indices (species richness, evenness, and Shannon’s

diversity) using the BiodiversityR package v. 2.12–3 [52] and standard deviations represent

variation across the six sample sites. We ran an analysis of variance (ANOVA) using the pro-

gram JMP Pro 12 (SAS Institute Inc., NC, USA) to determine if diversity indices differed

among sample sites and across primer sets. When a significant interaction was detected, we

performed a post-hoc Tukey-Kramer Honest Significant Difference (HSD) test to determine

which group means were significantly different. Dissimilarity in species composition among

the different primer sets were calculated by non-metric multidimensional scaling (NMDS)
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analysis using read abundance-based on Bray-Curtis coefficients. The NMDS analysis was

conducted using metaMDS commands in the R package Vegan [53] and visualized in RStudio

using ggplot2 [54]. An analysis of similarity (ANOSIM; [55]) was used to test for significance.

When a significant difference was detected, we performed the similarity percentage analysis

(SIMPER) in Vegan to determine which taxa were responsible for explaining most of the dif-

ference among groups. Finally, to visualize the number of common and unique species

detected across primer sets, a Venn diagram was constructed using the R package VennDia-

gram v1.6.2 [56].

3 Results

3.1 Illumina sequencing

A total of 2.1 and 2.0 million paired-end sequence reads were generated from the 2 × 150 bp

(Riaz_12S and Valentini_12S) and the 2 × 250 bp (MiFish_12S, Berry_16S, and MacDo-

nald_18S) Illumina MiSeq runs, respectively. Across both runs ~ 92% of the paired-end reads

had phred scores of� 30 and in total 63.19% of the reads were retained after quality filtering.

The percentage of reads retained after quality control was 71.02% for MiFish_12S, 63.74% for

Riaz_12S, 60.10% for Valentini_12S, 78.74% for Berry_16S, and 72.25% for MacDonald_12S

with the number of total reads retained for each primer set ranging from 295,277 to 711,351

(Table 2). The average number of reads per sample was the highest for Berry_16S

(57,729 ± 14,331 reads) and lowest for MiFish_12S (33,711 ± 13,984) while the Riaz_12S and

Valentini_12S primers resulted in 51,434 ± 13,944 and 48,522 ± 13,511 reads, respectively.

There was no indication of contamination in any of the extraction or PCR negative controls

(samples did not amplify in PCR 1). However, two out of the six field negative controls did

amplify and so these were included in library preparation and sequencing. Sequencing these

negative field controls resulted in just 5,206 reads, 99.23% (5,166 reads) of which assigned to

human DNA for Valentini_12S primers. Of the remaining 40 reads, 10 were assigned to Lutja-
nus spp. and 28 reads were assigned to Lutjanus griseus for the Riaz_12S primers, while the

other two reads were assigned to Mugil curema for the Valentini_12S primers. No contaminat-

ing sequences were detected using the other three primers sets (MiFish_12S, Berry_16S,

MacDonald_18S).

The MacDonald_18S primer set amplified taxa from 24 different phyla including Porifera,

Cnidaria, Platyhelminthes, Nematoda, Mollusca, Annelida, Arthropoda, Echinodermata, and

Chordata. Copepods (phylum Arthropoda) accounted for 28.57% of reads while green algae

(phylum Chlorophyta) accounted for 24.87% of reads. Since only 278 reads or 0.09% of the

Table 2. Illumina sequencing results.

# Sequence reads MiFish_12S Riaz_12S Valentini_12S Berry_16S MacDonald_18S

After quality filtering 497024 637771 676856 711351 295277

% assigned to fish

Class 94.12 99.99 94.49 99.95 0.094

Order 92.05 99.99 94.45 99.95 0.046

Family 84.88 98.31 88.51 98.11 0.00

Genus 84.88 98.31 88.51 98.11 0.00

Species 81.39 96.78 86.03 97.38 0.00

Non-target 5.88 0.005 4.75 0.055 99.99

Listed is the total number of reads retained after quality control and the percentage of those reads assigned to target (fishes) and non-target taxa (non-fish).

https://doi.org/10.1371/journal.pone.0266720.t002
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total reads that resulted from the MacDonald_18S primer set were assigned to fishes (and

none could be resolved to species level), we did not include data of this marker in subsequent

analyses. Across the remaining four primer sets, the proportion of reads passing quality filters

that were assigned to fish taxa were 94.12% for MiFish_12S, 99.99% for Riaz_12S, 94.49% for

Valentini_12S, and 99.95% for Berry_16S (Table 2, Fig 1).

Fig 1. Proportion of reads assigned to each taxonomic level for the four metabarcoding primer sets tested here.

https://doi.org/10.1371/journal.pone.0266720.g001
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3.2 Taxonomic assignments and biodiversity estimates

While adjusting the sequence similarity threshold did change the number of species detected

for each primer set, the interpretation of the overall pattern did not change. Regardless of

which similarity threshold was applied the Riaz_12S primer set resulted in the most species

detected with Berry-16S ranking second (S2 Table). There were no notable changes in taxa

detected when comparing the 97% and 98% thresholds but there was predictably an increase

in the number of species resolved if we applied the 98% threshold compared to the more con-

servative 99% threshold. Most notably, when we compared the best performing Riaz_12S

using the 99% cutoff with the worst performing primers sets using a 97% cutoff the latter still

resulted in a higher number of species detections (S2 Table). Similar patterns were found for

the diversity indices (S3 Table). As a result, here we apply a single conservative similarity

threshold of 99% for species-level designations and report these throughout.

Across the four primer sets, we detected 76 species of fish in two classes, 17 orders, 48 fami-

lies, and 67 genera (Table 3). Although the vast majority of reads were assigned to class Acti-

nopterygii (>99%; bony fish), we also detected sharks and rays with each primer set (class

Chondrichthyes; Table 4), but with relatively low read counts that ranged from 7 to 2,581

reads. We detected the highest number of taxa (across all taxonomic levels) with the Riaz_12S

primer set but the highest number of ASVs with the Valentini_12S primers (Table 3). We

resolved a similar number of fish species with the Riaz_12S and Berry_16S primer sets

(55 ± 5.59 and 49 ± 6.69, respectively). The MiFish_12S and Valentini_12S primers sets also

resolved similar numbers of species (34 ± 3.13 and 32 ± 4.72, respectively) but significantly

fewer than the Riaz_12S and Berry_16S primer sets (Table 5; Tukey-Kramer HSD P< 0.05).

Table 3. Number of fish taxa detected for each of the four metabarcoding primer sets using the following similarity thresholds: 99% for species; 97% for genus; 95%

for family; 90% for order; 85% for class; and 80% for phylum.

Taxonomic rank MiFish_12S Riaz_12S Valentini_12S Berry_16S Total

Class 2 2 2 2 2

Order 14 16 12 12 17

Family 28 37 24 29 48

Genus 38 53 34 43 67

Species 34 55 32 49 76

ASVs 161 159 247 140 -

Classes include Actinopterygii and Chondrichthyes.

https://doi.org/10.1371/journal.pone.0266720.t003

Table 4. Species of cartilaginous fishes detected with each of the four metabarcoding primer sets tested in this study.

Class Subclass Primer Species

Chondrichthyes Elasmobranchii MiFish_12S Dasyatis say
Riaz_12S Aetobatus narinari

Dasyatis sabina
Dasyatis say
Gymnura micrura
Hypanus sabinus
Rhinoptera spp.

Valentini_12S Aetobatus narinari
Dasyatis say
Hypanus americanus
Rhinoptera spp.

Berry_16S Hypanus americanus

https://doi.org/10.1371/journal.pone.0266720.t004
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Estimates of evenness were low and were significantly different among primer sets (Table 5).

Our estimates of Shannon’s diversity ranged from 1.01 ± 0.45 for MiFish_12S to 1.75 ± 0.47

for Riaz_12S. Similar to species richness, Shannon’s diversity values were roughly equal for the

MiFish_12S (1.01 ± 0.45) and Valentini_12S (1.09 ± 0.35) primer sets and were not signifi-

cantly different (Table 5). However, Shannon’s diversity values for the Riaz_12S primer set

were significantly higher than the MiFish_12S primer set (Tukey-Kramer HSD, P = 0.049;

Table 5).

Of the 76 species of fish detected in this study (S1 Fig), only 17 were common to all datasets

with between 1–12 unique species detected by any single primer set (Fig 2). The numbers of

reads assigned to the 17 common taxa were 514,041, 555,883, and 569,976 for the Riaz_12S,

Valentini_12S, and Berry_16S primer sets, respectively (S4 Table). The MiFish_12S had the

lowest number of reads across these 17 species (381,805) and accounted for just 16% of total

read counts across all datasets (S5 Table) suggesting lower PCR efficiency. We resolved a high

number of unique species using the Riaz_12S and Berry_16S primer sets (12 and 11 species,

respectively), while only three unique species were detected using the MiFish_12S primers and

only one was detected using the Valentini_12S primers. Based on the ANOSIM analyses, spe-

cies assemblages differed significantly across primer sets (R = 0.4011, P< 0.001); a finding that

was supported by the NMDS plots which showed clear separation among marker sets when

either the read abundance data (Fig 3) or presence/absence data (S2 Fig) were analyzed. How-

ever, no significant differences were observed in the fish communities across the different sam-

pling sites (ANOVA, F = 1.25, P = 0.33; Fig 3). The five most influential species contributing to

these differences, based on SIMPER analyses, are given in Table 6 with the White mullet Mugil
curema ranking first in all comparisons. This species was also the most dominant in terms of

read count across primer sets.

4 Discussion

When designing eDNA studies, choosing metabarcoding primers is of critical importance as

the initial monetary investment can be high and the decision will have a significant impact on

project results [29,42]. Primers with insufficient taxonomic specificity can result in the loss of

sequencing effort to non-target taxa as well as false negatives. This is particularly true in highly

diverse study systems where non-target DNA (i.e., microbial and plankton communities) is

abundant [29]. Despite the growing interest in the use of eDNA to assess fish communities,

there has been a surprising lack of studies that have directly compared the efficacy of metabar-

coding primer sets in marine and estuarine systems. Because the performance of eDNA meta-

barcoding primers will vary depending on the study system (freshwater, marine, or estuarine)

and taxonomic composition, there is no guarantee that a primer set that performs well in a

freshwater system will do so in marine or estuarine systems. For this reason, we included three

Table 5. Diversity indices including species richness, evenness, and Shannon’s diversity calculated using the R package BiodiversityR v. 2.12–3 for each of the four

metabarcoding primer sets.

Primer set Species richness Evenness Shannon’s diversity

MiFish_12S 34 ± 3.13 a,c 0.134 ± 0.054 a 1.01 ± 0.45 a

Riaz_12S 55 ± 5.59 b 0.163 ± 0.067 a 1.75 ± 0.47 b

Valentini_12S 32 ± 4.72 a 0.153 ± 0.054 a 1.09 ± 0.35 a,b

Berry_16S 49 ± 6.69 b,c 0.138 ± 0.064 a 1.30 ± 0.52 a,b

Standard deviations are based on the data from all six sample sites. Those comparisons that were significant using an ANOVA show superscripts with different letters

indicating statistical difference at P < 0.05 using the post-hoc Tukey-Kramer Honest Significant Difference test.

https://doi.org/10.1371/journal.pone.0266720.t005
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primer sets that performed well in the freshwater study of Zhang et al. [42], to determine their

effectiveness in a biodiverse estuarine system. Our study system, the Indian River Lagoon,

which runs along Florida’s east coast is regarded as the most species rich estuary in the U.S.

[57]. Our results show that the 12S rRNA primers of Riaz et al. [58] were the most taxon-spe-

cific with 99.99% of the resulting reads assigned to fish and 96.78% of reads assigned to the

species-level. The 16S rRNA primers of Berry et al. [31] also performed well with 99.95% of

reads assigned to fish and 97.38% assigned to species. Furthermore, a similar number of spe-

cies were identified using these primer sets (Table 3) and both resulted in comparatively high

Shannon’s diversity values (Table 5). The popular 12S primers of Miya et al. [59] did well in

terms of the percent reads assigned to fish taxa (94.12%) and species (81.29%), but only 34 spe-

cies were detected using this primer set, performing similarly to the Valentini_12S primer set.

Taken together, these results indicate that the Riaz_12S and Berry_16S primer sets performed

best in our biodiverse estuarine system and resolved the greatest number of target species.

Moreover, of the 76 fish species identified in this study, 85.5% (65 of 76) were detected when

Fig 2. Venn diagram representing the number of fish species detected across four metabarcoding primer sets. The numbers shown in the areas of overlap

reflect shared species.

https://doi.org/10.1371/journal.pone.0266720.g002
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we combined the three 12S primer sets while combining the Riaz_12S and Berry_16S primers

detected 93.4% (71 of 76). This finding supports the importance of not only employing multi-

ple primer sets but also using primers that target different genes.

Fig 3. Nonmetric multidimensional scaling plots (NMDS) based on read abundance for each of the species detected from six sampling locations in the Indian River

Lagoon, Florida. The numbers inside the circles represent sample sites. Metabarcoding data was generated for four primer sets designed to amplify fishes.

https://doi.org/10.1371/journal.pone.0266720.g003
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The rate of evolution varies across genes and gene regions and therefore applying a single

set of taxonomic thresholds (i.e., 99% sequence similarity for species-level designations) can be

misleading. However, our analyses of the sequencing results from the four primer sets at three

different species-level similarity thresholds (99%, 98%, and 97%) did not change our interpre-

tation of the data. The Riaz_12S primer set either did as well or outperformed the others in

terms of specificity (99.99% of reads assigned to fishes; Table 2), universality (greatest number

of taxa amplified; S2 Table), and taxonomic resolution (96.78% of reads assigned to the spe-

cies-level at the 99% threshold) regardless of which cutoff value was applied. Most notably, this

Table 6. Results of SIMPER analysis conducted using the R package Vegan.

Taxon Average dissimilarity % contribution % cumulative Overall average dissimilarity

Riaz_12S vs Berry_16S 43.26

Mugil curema 15.04 34.76 34.76

Leiostomus xanthurus 4.197 9.7 44.46

Bairdiella chrysoura 3.723 8.606 53.07

Pogonias cromis 3.026 6.994 60.06

Lagodon rhomboides 2.735 6.321 66.38

Riaz_12S vs MiFish_12S 49.51

Mugil curema 17.67 35.68 35.68

Bairdiella chrysoura 7.286 14.71 50.4

Pogonias cromis 4.15 8.382 58.78

Lagodon rhomboides 3.429 6.927 65.7

Ariopsis felis 2.824 5.704 71.41

Riaz_12S vs Valentini_12S 43.87

Mugil curema 15.77 35.95 35.95

Bairdiella chrysoura 6.508 14.84 50.78

Lagodon rhomboides 3.632 8.281 59.06

Pogonias cromis 3.394 7.738 66.8

Ariopsis felis 2.364 5.389 72.19

Berry_16S vs MiFish_12S 45.68

Mugil curema 20.79 45.51 45.51

Bairdiella chrysoura 5.267 11.53 57.04

Leiostomus xanthurus 4.125 9.031 66.07

Lagodon rhomboides 3.707 8.115 74.19

Mugio cephalus 1.392 3.048 77.23

Berry_16S vs Valentini_12S 34.12

Mugil curema 12.77 37.41 37.41

Bairdiella chrysoura 4.819 14.12 51.53

Leiostomus xanthurus 3.497 10.25 61.78

Lagodon rhomboides 3.185 9.335 71.12

Lutjanus griseus 1.098 3.218 74.33

MiFish_12S vs Valentini_12S 43.05

Mugil curema 21.11 49.03 49.03

Bairdiella chrysoura 8.486 19.71 68.74

Lagodon rhomboides 6.283 14.59 83.33

Mugil cephalus 1.528 3.549 86.88

Leiostomus xanthurus 1.296 3.009 89.89

The five species that contributed most to the dissimilarity among metabarcoding primer sets are listed.

https://doi.org/10.1371/journal.pone.0266720.t006
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was true even when comparing Riaz_12S using the conservative 99% cutoff against all other

primers sets using a 97% cut off (S2 Table). Similar patterns were found for diversity indices

(S3 Table).

Despite the fact that the 18S primer set of MacDonald et al. [44] was designed to specifically

target fish and a high annealing temperature (62˚C) was employed, less than 1% of the reads

generated using these primers assigned to fishes and none could be assigned to the species

level. Instead, >99% of reads were assigned to non-target taxa across a diversity of groups par-

ticularly copepods and green algae. This can likely be explained by the fact that these primers

were designed based on the alignment of 18S gene sequences from only ten species of freshwa-

ter fish, and while they performed well in the original experiment where primer testing was

performed on tissues from known fish species, they are not suitable for metabarcoding.

4.1 Detection of sharks and rays

All four primer sets tested here amplified DNA from both bony (class Actinopterygii) and car-

tilaginous fishes (class Chondrichthyes) with the vast majority of the reads (> 99%) assigned

to the former (Table 4). Of the seven cartilaginous fish species detected, six were identified by

Riaz_12S and four were detected by Valentini_12S. The MiFish_12S and Berry_16S detected

only one species each. These results suggest that Riaz_12S primer set may also be suitable for

the detection of sharks and rays. However, if elasmobranchs are the primary target group, it

would be prudent to test primers using DNA extractions from species expected in the study

area. Furthermore, there are a number of published primers that have been designed specifi-

cally for elasmobranchs that are worth exploring [12,60].

4.2 Reference databases and taxonomic assignments

Another factor that must be considered when choosing candidate primer sets for metabarcod-

ing is the completeness of the reference databases [61,62]. For instance, while the COI refer-

ence databases for animals are robust, designing COI primers that are taxon specific is

problematic, so primers are designed with high levels of degeneracy. This leads to the amplifi-

cation of non-target taxa that can account for a large proportion of reads [28,29]. Furthermore,

specific loci are often favored for some taxonomic groups. For example, 16S rRNA is most

often employed to characterize bacterial communities, ITS is often used for fungi [63], and 18S

rRNA is commonly employed for zooplankton [64]. For fishes, primers that amplify a portion

of the 12S and 16S rRNA genes seem to provide a compromise between universality and speci-

ficity and are commonly used [65–67]. Incomplete reference databases also pose obstacles to

taxonomic assignments [62,68]. Missing sequences can lead to misidentifications or the col-

lapsing of assignments to genus or higher levels of classification. Over 20 years ago, when very

few 16S rRNA bacterial sequences were publicly available, a 97% sequence similarity threshold

was proposed for species-level assignments [69]. However, as publicly available sequence data

increased exponentially, sequence similarity thresholds for species-level assignments have also

increased and now typically range from 97–100% depending upon the target taxa and locus

employed [27,35,70–74]. While there is no clear consensus on threshold criteria, recent studies

have suggested that a 99–100% similarity threshold may be most appropriate for species-level

assignments using 12S [73] and 16S rRNA markers [75].

4.3 Annealing temperature, human contamination, and other cautionary

notes

Primer annealing temperature is an important factor in determining PCR success and specific-

ity. At lower temperatures, just a partial match between primer and template can be sufficient
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to permit amplification. On the other hand, higher annealing temperatures require exact or

nearly exact primer-template match and usually results in high specificity. The MiFish_12S

primer set has been employed in several published studies with annealing temperatures rang-

ing from 50˚C to 65˚C [16,36,42,59,76–78]. Initially, we tested the MiFish_12S primer set

using an annealing temperature of 55˚C based on Andruszkiewicz et al. [76]. Surprisingly,

none of the resulting reads assigned to fish but instead were assigned to bacteria. Following the

optimized protocol of Bylemans et al. [16], we raised the annealing temperature to 61.5˚C for

subsequent experiments which resulted in 94.12% of reads assigning to fish. Our initial results

could have been exacerbated by the high bacterial loads in our estuarine samples as DNA

primers will preferentially amplify abundant templates and sometimes fail to amplify low

abundant target DNA [17]. However, a similarly high percentage of non-target reads was

observed by Miya et al. [79] for the MiFish_12S primers employed in marine waters where tar-

get DNA was also scarce. This example highlights the utility of testing primers on a small num-

ber of samples prior to purchasing large primer sets and/or the bulk processing of samples.

Human DNA was detected in all of our sequencing libraries except those produced using

the Berry_16S primer set. Because human DNA was amplified in our field negative controls

but not our lab controls (extraction and PCR negative controls), contamination was most

likely introduced during sample collection or filtering. The presence of human DNA in eDNA

metabarcoding studies is common [59,80,81]. To alleviate this problem, human-specific block-

ing primers have been used [82,83], however, the use of blocking oligos has been shown to

reduce the number of target species detected in metabarcoding studies [42]. Moreover, only a

small percentage (1.48%) of our reads were assigned to humans. Therefore, the use of blocking

primers is not advised if contamination levels are likely to be low.

Many studies show a positive correlation between animal abundance and/or biomass esti-

mates and the number of reads obtained from eDNA metabarcoding studies (reviewed by

[84]). However, the inconsistency across studies, our insufficient understanding of DNA shed-

ding rates, and the current paucity of information on how biotic and abiotic factors influence

eDNA detection rates, limits the utility of eDNA for estimating species biomass and abun-

dance [85,86]. These issues need to be more fully addressed before the relationship between

eDNA copy number and abundance can be accurately modelled. As a result, we use read abun-

dance as a proxy for species abundance for our Shannon’s diversity value calculations but do

so with great caution and refrain from over interpreting the results herein.

5 Conclusions and recommendations

The published data, including this study, demonstrate that for most aquatic systems no single

primer set can capture all the diversity of any given community [10,87]. However, employing

multiple primer sets may be cost prohibitive for some laboratories. In those cases where fish

are the target the Riaz_12S primer set is a good option to consider. In our dataset from the bio-

diverse Indian River Lagoon in Florida, 99.9% of reads generated using this primer set assigned

to fish and resulted in the greatest number of species detected. This is contrary to what seems

to be a settling of some segments of the eDNA community on the MiFish_12S primers as the

standard [88], which in our study did not perform as well. It should be noted that our results

are based on limited sampling in a single, albeit highly diverse, estuary. Because fish communi-

ties vary significantly across space and time our findings may not be directly transferrable

across systems. However, our results do add to the growing literature concerning eDNA proto-

cols and best practices and will aid in the narrowing of primer choices for other researchers.

Furthermore, our study highlights the importance of targeting different barcoding genes when

possible. When we combined the results of the three 12S makers 85.5% species in the dataset
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were accounted for, whereas 93.4% of the species were detected by combining the Riaz_12S

and Berry_16S primer sets. The failings of the MacDonald_18S primer set to identify target

taxa and the mis-priming of the MiFish_12S primer set due to low annealing temperature

highlights the importance of methods testing and optimization before large investments are

made in any particular protocol.
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using four primer sets designed to amplify fishes.
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